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Received 23 January 1980 

Abstract. It is shown that a Hermitian phase operator exists for quantum spins. Its 
spectrum is not continuous but has the values [27r/(2S + l)]n, 0 < n < 2S  for spin S. The 
precession of a h i g h 3  spin in a magnetic field is shown to consist essentially of a set of jumps 
from one value of phase to the next one, at equal time intervals. At intermediate times the 
value of the phase is uncertain. By going to a larger Hilbert space than the spin space, a 
Hermitian phase operator whose eigenvalue spectrum covers the entire real line is defined, 
and its relation to the formerly defined operator is clarified. Possible applications to spin 
and other systems are outlined. 

1. Introduction 

The concepts of amplitude and phase play important roles in the description of quantum 
mechanical systems. The theories of superfluidity, superconductivity and coherent 
optics are examples where the phase is one of the central objects of investigation. On 
the other hand, phase operators have been shown not to exist in quantum mechanics 
(Carruthers and Nieto 1968 and references therein, Susskind and Glogower 1964, Zak 
1969), or at least not to be defined on the entire physical Hilbert space (Alimov and 
Damaskinskii 1979, Garrison and Wong 1970). The question arises whether phase is a 
purely classical concept that has no exact meaning in the quantum world, or whether it 
does have a quantum counterpart, but the latter does not comply with the assumptions 
that stand behind the above statement of non-existence. 

One of the basic assumptions made in the first three references cited is that the phase 
operator 4 must be conjugate to the spin operator S' (or the number operator in the 
case of bosons) or in other words 

S' = -i(a/aq^). (1.1) 

This assumption contains in it implicitly another assumption, namely that 4 has a 
continuum of eigenvalues, so that the derivative operator makes sense. This assump- 
tion can certainly not hold in the finite Hilbert space on which the spin operators act. 

The aim of this paper is to show that by dropping these assumptions one can find an 
operator whose classical limit is the phase. This is done in § 2. The resulting phase 
operator has a discrete spectrum with eigenvalues [ ( 2 ~ / ( 2 S  + l)]n, where it is an 
integer. Section 3 deals with some properties of the phase operator and its eigenvectors. 
It turns out that the phase operator and S" are still conjugate in some sense: 
exp{-i[2~/(2S + l)]S'} shifts the phase by one quantum and exp{i(2~/(2S + 1)]4} shifts 
S" by one quantum. 
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Section 4 deals with the precession of a single spin in a magnetic field. It is shown 
that the state of the spin progresses through eigenvalues of 4 at times [T/(2S + l)]n, 
where T is the time of a complete period. After being at the value of phase 
q = 27rn/(2S + 1) at time [T/(2S + l)]n, high enough spins have a high probability of 
staying close to this value for additional time T/2(2S + 1); then the highest probability is 
to be in the state [T/(2S + l)](n + 1). Pictorially one could describe the precession 
as a set of jumps from one eigenvalue of the phase operator to the next one, the spin 
staying at one value of phase for a period of time At = T/(2S + 1). This uncertainty in 
the phase of the spin is discussed in a quantitative manner in 4 5 ,  where-loosely 
speaking-it is shown that the sum of the uncertainties in the phase and the uncertainty 
in S' is bounded from below. The case of minimal uncertainty occurs in the high-Slimit 
when the uncertainty in S' is (thus A(S'/S)-S-1/2) and the uncertainty in the 
phase is ~ T S - ~ ' ~ .  Lieb (1979) and Simon (1979) have proven that the classical limit of 
quantum spin systems is essentially given by the S+CO limit, provided the spin 
operators are normalised by S-'. It seems reasonable that a S-' expansion around the 
classical limit should exist. Indeed, such an expansion has been found in the high 
temperature limit (Harrigan and Jones 1973). In the second part of 8 5 it is shown how a 
S-l expansion around the classical limit model can be constructed. 

Section 6 shows how a phase operator with a continuum of eigenvalues can be 
defined as a canonical operator. To do so one has to embed the spin Hilbert space in an 
infinite Hilbert space. 

The reason is essentially the fact that a classical description contains more informa- 
tion than a quantum one, so in order to describe a quantum system in a classical 
language, one has to use redundant states. A famous example of such a description is 
the coherent state representation of bosons (Glauber 1968). In the enlarged Hilbert 
space the eigenvalues of 4 can take any real value between -00 and 00. It is then shown 
that S' can be taken as the conjugate of 4 only in the zeroth approximation is S-',  This 
shows that the definitions of spin operators in terms of canonical operators in Villain 
(1974) and Bar'yakhtar and Yablonskii (1976) are correct only in the S+CO or the 
classical limit. Section 7 summarises the results. 

2. Derivation of the phase amplitude representation 

A classical vector V of length V can be represented in cylindrical coordinates through 
the components V* and V' where 

q is the 'phase' of V in the x-y plane. The problem addressed in this work is to find a 
quantum expression for the quantum raising and lowering operators S" in the case of 
spin S such that it resembles equation (2.1) and goes over to it in the classical limit 
S + CO. In particular, q is a candidate for a (Hermitian) phase operator. The general 
form of S +  we seek is: 

S + =  exp(id)R(S') (2.2) 

where R(S')  is a real function of the operator S' and exp(i4) symbolises a unitary 
operator whose eigenvalues lie on the unit circle. exp(-iq*) will denote the Hermitian 
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conjugate of exp(iq*): 

exp(-iq*) exp(iq*) = exp(iq*) exp(-iq*) = 1. (2.3) 
Representation (2.2) is henceforth referred to as the phase representation of spin 
operators. So far exp(iq*), exp(-iq*) should be treated as symbols since an operator q* has 
not been proven to exist yet. Let m be an eigenket of S' with eigenvalue m, 
- S  s m < S.  From equation (2.2): 

S'lm) = R(m) exp(icj)lm). (2.4) 
The number m has been substituted in R(S')  instead of the operator S'. On the other 
hand, as is well known: 

S'lm) = [ S ( S  + 1) - m(m + l ) y / m  + 1). (2.5) 

exp(iq*)lm) =f(m)lm + 1) (2.6) 

R ( m ) f ( m )  = [ S ( S + l ) - m ( m  +l)ll? (2.7) 

exp(-iq*)lm) = f * (m  - 1)lm - 1) 

exp(-iq*) exp(iq*)lm) = If(m)121m> (2.9) 

From equation (2.4) we conclude 

for - S  < m < S,  where f (m)  satisfies 

From the conjugate of equation (2.6) it is easy to show that 

(2.8) 
for - S  < m d S.  Hence, using equations (2.6) and (2.8), 

for m # S and, using equation (2.3): 

= 1, m # S. (2.10) 

Puttingf(m) = exp[iG(m)], where $(m) is a real number, we obtain from equation (2.7) 

R ( ~ ) = [ s ( s +  l ) -m(m +~)] ' /~exp[ i+(m)I  m # S. (2.11) 

R(s')  = [ S ( S  + 1) - s'(s' + I)]'" exp[i$(~')]. 

S' = exp(iq*)[S(S + 1)-S'(S' + 111''~ exp[i$(~')] 

exp(iq*))m) = exp[i+(m)]lm + 1) 

The operator R(S') is then defined: 

(2.12) 

Equation (2.12) is the most general form of R compatible with equation (2.2). Hence 

for -S  s m < S.  (2.13) 

One should note that we have not defined exp(iq*)/S). Its definition is irrelevant for S' 
since the square root in equation (2.12) will always yield zero when acting on IS). On 
the other hand, a complete definition of the operator exp(iq*) requires the knowledge of 
exp(iq*)IS) as well. This is done below, subject to the restrictions of unitarity (equation 
(2.3)). The most general form of exp(iq*)IS) is given by 

From equation (2.13): 

(mlexp(-iq*)=(m+11 exp[-i$(m)] for - S = s m < S .  (2.15) 
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Hence from equations (2.14) and (2.15): 

(ml exp(-iq^) exp(i4)IS) = am+l exp[-irl/(m)]. (2.16) 

Using the unitarity of exp(i4) (equation (2.3)) we obtain from equation (2.16) that 
a,+l exp[-i+(m + l)] = 0 for - S  c m < S,  or 

am = O  f o r - S < m < S .  (2.17) 

Hence exp(iq)lS) = asl-S).  Usingunitarity again it follows that las12 = 1. Hence we can 
write as = exp[i$(S)] with $ ( S )  a real phase. This completes the definition of exp(i4). 
For future reference we summarise: 

exp(i4)lm) = exp[i$(m)]lm + 1) 

exp(i4)lS) = exp[irl/ ( S ) ] /  -S>. 

for m # S 
(2.18) 

The above defined exp(i4) is unitary by construction. We shall now proceed to find its 
spectrum and eigenvectors. 

Let A be an eigenvalue of exp(i4) and IA)  the eigenvector associated with it. The 
most general form of IA)  can be written as 

S 

m=-S 
I A ) =  C bmIm)* 

Hence, using equation (2.18), 

(2.19) 

or 
Ab,,, = exp[i$(m - 1)]!1~-~ for m # - S  

Ab-s = bs exp[i$(S)]. 
Hence 

S 

,IZS+'  n b, =exp( i f $ ( m ) )  fi b,. 
m = - S  m=-S m = - S  

(2.20) 

(2.21) 

None of the 6,'s is zero, because if one of them is zero it follows from equation (2.20) 
that all are. Hence we obtain from equation (2.21) 

A = exp(i$) (2.22) 

where (I/ = X i = - s  $(m). The eigenvalues of exp(iq^) are therefore 

A, = exp{i[$/(2S + 1) + 2 m / ( 2 S  + I)]} O s n  C2S. (2.23) 

Equation (2.23) teaches us that the phase of a quantum spin is quantised. In this sense a 
theory of quantum spin S resembles a Z ( 2 S  + 1) gauge theory ('t Hooft 1978). When 
S += 03 the possible values of phase cover the entire [ 0 , 2 ~ ]  segment. It should be noted 
that up to a constant phase factor [rl//(2S + l)] the values of $(m) have no influence on 
the eigenvalue spectrum. 

The solution of the recursion relations (equation (2.20)) is 
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The superscript (n)  indicates that one deals with the state [ A f l ) .  The absolute value of bs 
is ( 2 s  + l)-”’ for /A,) to be normalised to unity. Its phase is irrelevant since it merely 
fixes the overall phase of [A,). However, for reasons which will become clear in § 3.1 we 
choose 

( 2 . 2 5 ~ )  
Hence 

b$‘) = A E+’ exp[-i+(~)]. 

b‘,“’=Ai”exp ( i “l +(m’)) m # - S  
(2.25b) 

If +(m’) is taken to be zero then the first line of equation (2.253) is valid for 
m = -S  too. 

The ( 2 s  + 1) states IA,,) constitute a complete orthonormal basis of the spin Hilbert 
space for any choice of the values of the $(m)’s. This enables one to define a phase 
operator 4, such that the previously defined symbol exp(i4) is really the exponent of i 
times the operator 4: 

( 2 . 2 5 ~ )  

The subscript + indicates that / A f l ) +  depends on the +(m)’s. Equation ( 2 . 2 5 ~ )  
completes the definition of the phase operator we set out to find. All operators in 
equation (2.12) are now well defined. 

The case $(m) = 0, - S  s m G S is of special importance as is shown in the next 
section. In this case we attach no subscript to the phase eigenstates: 

(2.26) 

3. Some properties of the phase operator and its eigenstates 

3.1. Conjugacy 

Although the pair (4, - S z )  is not a pair of conjugate operators, it shares an important 
property of conjugate pairs of canonical operators. As has been shown in § 2, equation 
(2.18), exp(i4) shifts the eigenstates of S‘, except for IS), by one unit. The effect of the 
operator exp[-i2d2/(2S + l)] when acting on an eigenstate of phase IA,) is 

exp[-i2rS2/(2S + l ) ] l A n )  = IAn+1) 

exp[-i2rSz/(2S + 1)lIAzs) = IAo) 

as can be easily checked using equation (2.26). 

O s n < 2 S  
(3.1) 

3.2. Connection with coherent spin states 

The coherent spin states (css) or the Wigner states have been used by Wigner (1959) to 
investigate the classical limit of Clebsch-Gordan coefficients. Let 6 be a unit vector 
specified by the spherical angle ( O , q 5 ) .  The corresponding css 16) is given by 

s .  616) = Sl6) (3.2) 
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i.e. it has the maximal projection in the direction specified by A. Using a classical 
language one can call it a spin that points in the A direction. Using equation (3.2) it can 
be shown that 

(6lSlA) = SA. (3.3) 
Intuitively one would expect an eigenstate \An) of the phase operator to be close in 

some sense to a css whose corresponding (e ,+)  is (7r/2,27rn/(2S + 1)). This is indeed 
the case. To illustrate this connection the css whose (e, 4) is (7r/2,0) is expressed in 
terms of the phase eigenstates. The css is (Messiah 1965) 

Hence 

Figure 1 shows the above matrix elements for different values of the spin S.  In all 
cases the IA(6 = 1r /2 ,#J  = 0)) is strongly concentrated around the n = 0 phase (note that 
the n = 2 s  phase is close to the n = 0 phase). The css cannot be phase eigenstates in 

0 8  

P 
O L  

0.2 

0 

n 

0 2 
n 

39 0 2 
n 

Figure 1. The projection P of css in the 
O = O ,  q5 = ~ / 2  direction on the phase 
eigenstates for S = $, 7 and 20. n denotes 
the index of the phase eigenstate. 
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general, because the absolute value of each of the expansion coefficients of the latter in 
terms of the IS' = m) states are ( 2 s  + l)-"' (see equation (2.24)), whereas equation 
(3.4) shows that this is not the case for css. There is however one exception, namely, the 
case S = 2. Its css in any direction 4 is given by 

(3.6) I6(8 = .n/2,4)) = 2-l" exp[-i(4/2)]1-3)+ 2-l" exp[i(4/2)]l$). 

The ]Ao)  and /Al) states are, from equations (2.23) and (2.24), 

/,io) = 2-l" exp[i(+($) + +(-3))/4]1-$) + 2-l" exp[i(3+(-3) - +(3))/4]1& 

lhl) = 2-l/* exp[i(+(l) + +(-l)+ 2.n)/4]1-3) +2-l/' exp[i(3+(-3) - +($)/4113>. 

By choosing +($) = -24, +(-$) = 0, / A o )  equals I n ^ ( @  = ~ / 2 ,  4)). The choice +(-$) = 0, 
+(;) = -24 - 27r makes Iho,~) equal to the corresponding css. There is, however, one 
important difference between the css and the phase eigenstates, which holds even in the 
S = 3 case. The ( 2 s  + 1) phase eigenstates are eigenstates of the same operator 4, 
whereas the css in any two different directions 6, 6' are eigenstates of two different 
operators S. 6, S. 6'. As a consequence the phase eigenstates are a complete ortho- 
gonal basis of the spin Hilbert space whereas the css are an overcomplete basis. This 
fact is important in applications. 

(3.7) 

4. Precession of a single spin in a magnetic field: the phase fluctuations 

In this section the precession of a single spin in a magnetic field in the t direction is 
analysed. The Hamiltonian is 

H =US'.  

The change in time of exp(i4) is found from 

i(d/dt) exp(i4) = [exp(ig), US'] 

which can be rewritten as 

i(d/dt) exp(i4) = w exp(iq*)[S' - exp(-iq^)S' exp(iq*)]. 

Using equation (2.18) with i,b = 0: 

exp(-iq*)S' exp(i4)lm) = (m + 1)lm) 
exp(-iq^)S' exp(i4))S) = -Sls). 

for m # S 

Hence 

(S' -exp(-i@S' exp(i4))lm) = -1m) 

(S' - exp(-id)S' exp(i4))lS) = ~ S I S ) .  

for m # S 

Let PS be a projection operator on IS): 

Pslm) = &,Am) or Ps = IS)(Sl. 

Then, using equation (4.5) we obtain 

S'-exp(-iq*)S' exp(iq^)= -(1-Ps)+2SPs =-1+(2S+1)Ps.  
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Substitution of equation (4.7) in equation (4.3) yields 

d exp(iq^) 
dt  

= w exp(iq^)[-1 + ( 2 s  + 1)Psl. i 

Ps clearly commutes with S' : 

dPs/dt = 0. 

Hence, the solution of equation (4.8) is 

(4.8) 

(4.9) 

exp[iq^(t)] = exp[iq^(O)] exp{-iw[-l+(2S + 1)Ps)tI (4.10) 

since Ps is a projection operator, that is 

Pi = Ps. (4.11) 

One can rewrite equation (3.10) as 

exp[iq^(t)] = exp[iq^(O)] exp(iwt)(l +{exp[-iw(2S + l ) t ]  - l}Ps). (4.12) 

Hence the expectation value of exp(iq^) in a state that was at q = 0 at t = 0, namely /Ao),  is 

(4.13) 

A similar result is obtained for any other state. When S + CO there is only the classical 
precession. For finite S there is a 'fast' correction of order S-l. Further understanding 
of the nature of this precession and its fast component is furnished by the computation 
of the time development of the state ] A n ) :  

IA,(t)) = exp(-iwS't)lh,(O)) 

(Aol exp[iq(t)]lAo) = exp(iwt)(l +{exp[-iw(2S + l ) t ] -  1}/(2S + 1)). 

or using the definition of / A n ) ,  equation (2.26): 

IA,(t)) = (2S+ 1)-1'2 f A i m  exp(-iwmt)lm). 
m = - S  

For times t that satisfy 

277 
wt=- 

2 S + l r  

with r any integer 

(4.14) 

(4.15) 

(4.16) 

In equation (4.16), (n  + r) in lAn+r)  should be understood modulo ( 2 s  + 1). Thus, after 
an integer number of time intervals of length T/(2S + l ) ,  where T = 2x/w is the 
classical period of precession, the spin is in a phase eigenstate. Another interesting 
question is what happens at intermediate times. To discover the answer we use 
equation (4.14) to calculate I(Afl,lAn(t))/2 for those times: 

(4.17) 

It can readily be seen that this matrix element is of order SP2 unless the denominator 
becomes of order S-2  too. This happens whenever wt  - 2 x ( n ' -  n)/(2S + l ) ,  i.e. when 
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the value of n' is as one would expect from a classical precession calculation. Figure 2 
shows the matrix element of equation (4.17) for n = 0 and different values of n. Note 
the maxima at the quantised time. At intermediate times, the state is a superposition of 
several /A , )  states. This is explicitly shown in figure 3. Figure 4 is a plot of the average of 
the phase operator q as time progresses. One can see that (for high enough spin) the 
system spends most time near the quantised values of the phase, and moves very quickly 
from the neighbourhood of one phase state to the next one. This process has been 
described in the Introduction as phase jumps. The phase has well-defined values only at 
the quantised times, and is uncertain at the intermediate times. This fact may have 
interesting physical consequences for physical quantities (as in superconductors and 
Josephson devices) that are coupled to a phase, namely that they might have a natural 
width that is due to the quantum fluctuations of the phase. Such possibilities are now 
being investigated. 

t 

Figure 2. The probability Po for a spin in a magnetic field whose state at time t = 0 is a phase 
eigenstate /Ao) to be at state n = 0, 1 , 2  at later times t. The full curve corresponds to n = 0, 
the dotted curve to n = 1 and the dashed curve to n = 2. The time scale is in units of 
2 ~ / ( 2 S +  1) and S = 20. 

5. Properties of high4 spins 

5.1. Uncertainty relations and minimal uncertainty states in the high-S limit 

The phase operator 4 and the operator S' do not commute. Consequently one can find, 
as is common in quantum mechanics, a lower bound to the sum or product of their 
uncertainties. However, since we deal here with a finite Hilbert space, in which the 
states can be normalised to unity, the lower bound on the product of uncertainties is 
zero. This is so because in an eigenstate of 4, for example, the uncertainty of 4 is zero. In 
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1 0  

0 2  

0 2 L 6 a 10 

n 

Figure 3. The probability distribution P, for a spin in a magnetic field whose state at time 
t = 0 is a phase eigenstate. Each graph represents different time: the full curve w f  = 1.05, 
the chain curve wt = 1.125, the small dashed curve 1.13 and the dashed curve w t  = 1.47. 
The lines are drawn only to guide the eye. n is the index of the phase eigenstate and S = 20. 

t I I I I I '  
5 -  

(g) 3 - 

0 2 L 

t 

Figure 4. The average phase ( 4 )  as a function of time in units of 27r/(2S + 1) for S = 20. Note 
that at the 'quantised' values of time the value of the phase changes very slowly. 

the same state the uncertainty of S" is finite (at most of order S ) ,  so the product of 
uncertainties is zero and it teaches us nothing interesting. The sum of uncertainties has, 
however, a non-trivial lower bound, which we set out to find. First one has to define the 
uncertainties quantitatively. The uncertainty in S", AS', is defined: 

(AS')2=((Sz - ( S ' ) ) 2 ) = ( S ' ) 2 - ( S " ) 2  (5.1) 

where the angular brackets mean, as usual, the expectation value in a normalised state 
belonging to the (spin) Hilbert space. 
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In defining the uncertainty of the angle, some care must be taken. This is so because 
the angle [ ( 2 ~ ) ( 2 S ) / ( 2 S  + l)] is close to the angle [ ( 2 ~ ) 0 / ( 2 S  + l)], whereas their 
corresponding values of phase are far apart. To overcome this difficulty we define 

( ~ h q ) ’  = ((exp(id) - (exp(iq*)))(exp(iq*) - (exp(iq*)))+. ( 5 . 2 )  

This definition is easy to understand if one notes that, loosely speaking, A exp(iq) - 
exp(iq)i Aq, hence A exp(iq) A exp(-iq) = (Aq)’. Since (exp(i$)+ = exp(-i@ and 
(exp(iq))* = (exp(-iq)), we can rewrite equation ( 5 . 2 )  as 

(5.3) (Aq)’ = 1 - I(exp(i@)I2. 
Let lX> be a normalised state in the spin Hilbert space: 

(5.44 b) 

Using definitions (5.1) and, (5.3) the respective uncertainties in the state IX) are 
S 2 S 

m=-S 
 AS')^= c m21am/2-( m=-S mlam/2)  

S 

m = - S t l  
(Aq)’= 1- 1 1 a ~ a m - l + a ? s a s  

( 5 5 2 )  

(5.5b) 

If one replaces all am’s in equation ( 5 . 5 ~ )  by their corresponding absolute values [ami, 
the uncertainty ASz  as well as the normalisation (equation (5.4b)) remain unchanged 
but Aq becomes smaller (or does not change). Hence without loss of generality one may 
assume all am’s to be real non-negative numbers. 

The scale of the eigenvalues of 4 is unity whereas the scale of the eigenvalues of 3’ is 
S. To work with similar scales and having in mind the classical limit we shall work with 
the uncertainty of S’/S, A(S’/S), which is defined simply as 

A(S’/S) = AS’/S. ( 5 . 5 2 )  

The object we wish to minimise is (A(S‘/S))’+ (Aq)’. Using equations ( 5 . 5 )  and the 
normalisation condition (equation (5.4b)) we see that the functional to extremise is 

The am’s are assumed to be real and A is a Lagrange multiplier which ensures the 
normalisation constraint. Varying F with respect to the am’s yields 

( m 2 / S 2  - 2 u m / s  -A)u ,  = v(am+l  + (5.7) 
where 

U =  f amam-l+a-sas= 5 amam-l 
m=-S+1 m = - S  

and as+l, a-s-l are to be understood as aws, as respectively. 

(5.8) 

(5 .9 )  
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Using the reality of the am’s and the above convention for the am’s, we can rewrite 
as follows: 

2 1 s  
( ~ p ) 2 = 1 - ( ,  m = - S  1 [ a k + a i - 1  -(am-am-1)2~) . (5.10) 

Then using equation (5.4b): 

1 s  
m = - S  

(5.11) 

S Aq is minimal when Z,=-s (a, - 
treat the am’s as forming a quasi-continuous function of m. Defining 

is minimal; hence in the h igh4  limit we can 

X = m/S, a, = a (X)/S’/’ ( 5 . 1 2 ~ )  

one can rewrite equation (5.7) to zeroth order in S - ’ :  

(X2 - 2 UX - A  - 2v)a ( X )  = S-’UU”(X). (5.12b) 

In equation ( 5 . 1 2 ~ )  we have used 
am+l + a,-1= 2a, + (U,+l -a,) - (a, - U,-I) = 2a, + s - 2 a ” ( x ) / s  1/2 . 

Equation (5.12b) can be rewritten as 

i((X- U ) 2 -  U’-A - 2 ~ ) a ( X ) = ~ S - ’ ~ a ” ( x ) .  (5.13) 

Equation (5.13) is essentially the Schrodinger equation of an harmonic oscillator, where 
ti2 has been replaced by F2, l / m  by U and the ‘energy’ is represented by U’+ A + 2v. 
The minimal uncertainty in AS‘/S is the minimal uncertainty in the coordinate AX, and, 
as can be easily seen, the minimal uncertainty in the phase Aq corresponds to the 
minimal uncertainty in the momentum conjugate to X. The state of minimum 
uncertainty in their sum is the ground state of the harmonic oscillator (Glauber 1968). 
Its wavefunction does not usually satisfy the condition as+l = as or a(1)  = a(-1) but 
this can be achieved by changes of order exp(-S) of the am’s as is seen below. Thus the 
minimal uncertainty wave packet is (neglecting O(S-’)) 

U(X)  =  IT-''^ exp[-i(S/v1”)(X- U)’]. (5.14) 

v is obviously close to 1 (up to order S-’ ) .  Taking a state with U = ( S ‘ )  = 0 as a 
prototype one obtains 

a, = (S’II-’’~ exp[-(1/2)m2/~].  (5.15) 

In this state, to lowest order 

(A:)’+ (Aq)2 = (s + 1/2)-’. (5 .16~’  6, c )  

Equation (5.16) shows again the similarity between the pair ( S ” ,  4) and the usual 
canonical variables. 
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5.2. A remark on the 1 / S  expansion 

A widely used approximation in quantum mechanics is the semiclassical approximation. 
It is essentially an expansion in powers of h. However, it is not a perturbation expansion 
in the usual sense. One cannot divide a Hamiltonian into its classical and quantum 
parts, the latter being a perturbation of order t i .  The reason is that in the classical limit 
all dynamical variables commute and it is impossible to divide a dynamical variable into 
a commuting and a non-commuting part or classical and quantum parts. Naturally, the 
same problems appear when one tries to expand the free energy (or any other property) 
of a quantum spin system around its classical limit. In the high-temperature limit such 
an expansion has been constructed by Harrigan and Jones (1973). However their 
method is inapplicable in the low-temperature regime. 

The phase representation can offer a different way for performing a 1/S expansion. 
This expansion seems to be well suited for XY-like models (Domb and Green 1974). 
To demonstrate the basic idea let us choose the X Y  model of spin S on a d-dimensional 
lattice 

(5.17) 
ij 

where i, j denote lattice sites and JIi is a short-range interaction. The classical limit of H 
is given by 

(5.18) HC1 = -1 JijS2 cos(qi - qj) 
i j  

where qi and qi are the corresponding phases. Let us write 

H = -E JiiS2 cos(i$ - gj) + ( H  + 1 JijS2 cos@ - d i ) )  * 
i,i i,i 

(5.19) 

The difference between the first part of (5.19) and (5.18) is the fact that in the former the 
qi are classical phases with a continuous spectrum in the ( 0 , 2 ~ )  segment, whereas in the 
latter Gi are quantum operators with a discrete spectrum. We shall denote the first term 
in (5.19) by 9"' and the second by H' .  A"' and H"' differ to order (S - ' ) .  However, 
they can be both considered to be classical Hamiltonians in the sen:e that they do not 
contain non-commuting objects. As a result objects like Tr exp(-pH"'), where p is the 
inverse temperature (in energy units), can be easily calculated as power series in (S - ' ) ,  
The S-' low-temperature series for exp(-PH) will be constructed from 

P 
exp(-pH) = exp(-&"') - I dp '  exp[-(p -p ' ) f ic ']H'  exp(-pH). (5.20) 

0 

To lowest order, H in the exponent in the RHS of (5.20) is substituted by I-?"'. The 
actual calculations for the X Y  and other models will be presented elsewhere. The form 
of the division into I-?"' and fi-fi" may differ from (5.19) in practical cases. 

6. A continuous phase operator 

As explained in the Introduction a definition of a continuous phase operator is possible 
only if the original, finite size, spin Hilbert space is embedded in an infinite Hilbert 
space. 
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Let 4,b be a pair of conjugate canonical operators [d, h ]  = i ( h  is taken to be equal to 
unity). We shall embed the spin space in the Hilbert space corresponding to the 
canonical operators defined above. The way this is done is similar to the block 
construction when the spin space is embedded in a Bose space (Goldhirsch 1980, 
Goldhirsch et al 1979). 

Let S be an integer or semi-integer. Any real number p can be uniquely written as 

p = (2S+ 1)n + m  + A  (6.1) 
where n, m are integers, -S S m 6 S and 0 6 A < 1. Let a state Ip )  denote an eigenstate 
of p with eigenvalue p .  We shall define S' through 

S'lp) = mid. (6.2) 

S'lp)= ((2s+l){[P+s1/(2s+1)}-s)lP) (6.3) 

Formally one can write 

where [XI means 'the integer part of X' and {X} denotes 'the fractional part of X'. Thus 
S' can be directly defined as 

S'=  (2S+l){[$+S]/(2S+l)}-S. (6.4) 
Using (6.1) we can denote any state Ip)  as Im, (n, A)). In the language of Goldhirsch 
(1980), (n, A) is the index of a 'block' (this time not a discrete index). The way S' should 
be defined is clear: 

S+/m,  (n, A)) = [ S ( S  + 1) - m(m + l)]*'21m + 1, (n ,  A)). (6.5) 
S -  is defined as the conjugate of S + .  According to their definitions S', S -  and S' 
connect only states inside a given block (n, A) and their action there is completely 
isomorphic to the action of the usual spin operators in the spin Hilbert space, provided 
we make the correspondence Im(n, A)) * Im), /m) being an eigenstate of S' with 
eigenvalue m. Since exp(iq^)l p )  = I p + 1) we can define formally 

s' = exp(id)[s(s + 1) -s'(s' + I)]"~. 

S - =  [ S ( S  + 1) - ~ ' ( s '  + I)]"* exp(-iq^). 

(6.6) 

(6.7) 

Definition (6.6) is equivalent to (6.5). Hence 

4 is clearly identified as the phase operator. 
Figure 5 shows S', or rather its eigenvalue, as a function of p in the case S = 2. 

Figure 5. S * ( p )  as a function of p (see text) for S = 2. 
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In a given block (n ,  A), n and A are unchanged by the spin operators. They can be 
considered as block invariants (Goldhirsch 1980) and may be of use in writing partition 
functions of spin systems in the ‘phase representation’. The definitions of the cor- 
responding operators are 

2 = [(i + S)/(2S + l)], 6 = (6 + S } .  (6.81, (6.9) 
It is interesting to note that although the spin operator in the continuous phase 
representation satisfies the correct spin commutation relations, as is obvious from 
equations (6.2)-(6.4), their matrix elements contain S functions: 

(6.10) 

(6.1 1) 

where S’(p) is the corresponding eigenvalue. This fact creates no problem in the use of 
this representation, since the S function is usually integrated over (for instance in 
calculating partition functions) and yields the same result as if one had used the original 
representation. Another possibility is to use only one n (e.g. n = 0) and define 

(6.12a) 

where 0 G E < 1. In this case no S functions appear. The price is the necessity to define 
and work with a projection into this subspace. 

In the h igh4  limits S‘ =p^ + 0(1)  for n = 0. This is the form used in Villain (1974) 
and Bar’yakhtar and Yablonskii (1976). As is clear from the above discussion these 
references are correct only to zeroth order in S-‘ ,  and additional corrections will arise in 
the next order. Moreover, it seems that the use of the discrete phase representation is 
more adequate for the construction of a S-’ expansion, in some cases. 

Finally we would like to clarify the connection between the continuous phase 
representation and the discrete phase representation. Let 4 be an eigenstate of 4 with 
eigenvalue 4. Then 

1 ‘  
Im) = ~ 1 / 2  1” d A h ,  (0 ,  A)) 

(6.12b) 

Using the definition of S’, equation (6.6), it follows that 

(PlS+lP’) = S(P - p ’ -  l ) f (P)  (6.13) 

where f ( p )  is a periodic function of p, whose period length is ( 2 s  + 1). Hence 

Using the periodicity of f ( p )  we can write: 
m 

f (p )  = C exp[i271.pn/(2S + 1 ) I C n  
n=-m 

where C,, are a set of Fourier coefficients. Hence 

(6.14) 

(6.15) 

(6.16) 
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Equation (6.16) means that S' does not connect eigenstates of phase unless they differ 
by an integer number times the phase quantum 2 ~ / ( 2 S  + 1). The same clearly holds for 
S -  and S'. Consequently any subspace {Iq); q = qo+ 27rn/(2S + l), n = all integers} of 
the Hilbert space with arbitrary real qo is closed under the spin operators. Thus the 
'phase quantisation' holds even when one tries to construct a continuous phase 
representation. From this point on, one can rederive the results of the previous sections 
using the continuous phase representation. 

7. Summary 

This work shows how a Hermitian phase operator for spins can be constructed and 
presents some of its properties. It turns out that the phase operator is not conjugate to 
S' as one might expect, yet its exponent acts as a shifting operator for eigenstates of S'. 
The precession of spins in a magnetic field shows phase fluctuations, which might be 
observable in physical systems in which the phase can be probed. The phase represen- 
tation can be used for developing S-' expansions for quantum spin systems, a subject 
that is under current investigation. 
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